

Plan

0. AW introduces – what to expect from today – Both motors are JVL Integrated motors, which means that all electronics are built-in (driver+indexer=controller + built-in encoder), which is the critical part that will manage the entire move – 2 minutes

1. Explain both motor types with focus on applications Kenneth with Stepper and Palle with Servo – 1 minute each

2. AW presents applications where KRP and PS sells in their motor type

Questions: Temperature – duty cycle – Adaption to different inertia – torqe/need of gear – ability to stand still –

3. When MUST it be a stepper or a Servo

4. Summery – The winners are – The most important part is the controller, the basic motor is basically simple. Place motors on podiums for each application

Servo vs Stepper

Pros and cons presented in this epic motor type battle!

Alexander Müller Wilms Area Sales Manager Technical support HQ – Denmark

Palle Sørensen Area Sales Manager Technical support HQ – Denmark

Kenneth Robert Pilheden Area Sales Manager HQ – Denmark

What is an Integrated Motor?

It is a Servo or Stepper Motor where all these parts are built-in into one compact unit:

Industrial Ethernet board Controller w/ ePLC + RS485 Absolute muliturn encoder High torreturn of the industrial of the i

Servo: MAC motor®

The heart of automation & robotics

- Highest Power density
- Highest Dynamics
- Widest Power range MAC motor up to 4.5 kW (separate servos several MegaWatt)

ServoStep™

The best of both worlds.... with a few limits

The advantages of a step motors + the controllability of a servo.

- Highest torque density
- Complete stand still
- Price advantage

Application 1 – Ball screw

Ball screw = combined transition to linear and gear reduction.

Has limited input speed depending on nut type

Application 2 – Belt

- Very high speed
- The chosen guide is the limiter

3 possible solutions

Limitations are maximum speeds and input torque

Application 3 – Turn-Table

It is a Servo or Stepper Motor where all these parts are built-in into one compact unit:

Podeums for each application

Summary

JVL Servo: MAC motor®

- Higher possible effect Peak effect 300%
- Often needs gear
- Higher possible duty cycle at high speed
- Best for dynamic movements

JVL ServoStep™

- Effect is limited to approx. 350 watt
- Higher torque often used without gear
- Limited duty cycle when used for high speed
- Best for positioning 100% standstill

Summery

Common for both JVL integrated Servo and Step motors

- Works at high speed at least 3000 RPM for most sizes
- Handles extremely big inertia ratios well
- Always in control no stalling or loosing position
- All electronics embedded
- Extremely efficient and compact

Both are servo motors

Winner = stepper up to 350W

Application 2 – Tooth Belt

Winner = ServoStep up to \$50 W

Winner = Servo (widest use and speed)

HQ – Denmark

Contact

HQ – Denmark

Contact JVL JVL A/S Bregnerødvej 127 DK-3460 Birkerød

Telephone: +45 4582 4440 Telefax: +45 4582 5550

Sales: <u>sales@jvl.dk</u> Invoice queries: <u>accounts@jvl.dk</u> Technical support: <u>support@jvl.dk</u> E-mail: <u>jvl@jvl.dk</u>