integration in motion www.jvl.dk		

1.1

Transmission technical calculations – Main Formulas

Size designations and units according to the SI-units

Linear movement:		Rotation	
$v = \frac{s}{t}$	m/s	$\omega = 2 \times \pi \times f$	rad/s
	-	$v = \omega \times r = 2 \times \pi \times f \times r$	m/s
$s = v \times t$	m	$M = F \times r$	Nm
$s_a = \frac{1}{2} \times a \times t_a^2$	m	$\mathbf{P} = \mathbf{M} \times \boldsymbol{\omega}$	W
$a = \frac{v}{t_a}$	m/s ²	$\mathbf{M} = \mathbf{J} \times \dot{\boldsymbol{\omega}}$	Nm
$\mathbf{P} = \mathbf{F} \times \mathbf{v}$	W	$\mathbf{W} = \frac{\mathbf{J} \times \boldsymbol{\omega}^2}{2}$	Ws or J
$F = m \times a$	Ν	$J = m \times r^2$	kgm ²
$W = F \times s$	Ws		
$W = \frac{m \times v^2}{2}$	Ws		

Units used

v = velocity in m/s	F= force in N	J = Rotational mass moment of inertia in		
M = mass in kg	W = work in Ws = J = Nm	kgm ²		
P= power in W	ω = ang. velocity in rad./sec.	$\dot{\omega}$ = angular acc. in rad/s ²		
s = length in m	f = frequency in rev./sec.	M _a = acceleration torque in Nm		
t = time in sec.	r = radius in m			
a = acc. in m/s^2	M = torque in Nm			

 t_a = acc. time in sec.

1.1

Formulae for the transmission technique

Power

Rotational Movement:

Linear Movement:

π

$P_s = M \times \omega$	W (without loss)	$\mathbf{P} = \mathbf{F} \times \mathbf{v} \times \frac{1}{\eta}$	W
$\omega = \frac{\pi \times n}{30}$	rad/s	$\mathbf{P} = \frac{\mathbf{F} \times \mathbf{v}}{1000} \times \frac{1}{\eta}$	kW
$\mathbf{P} = \frac{\mathbf{M} \times \mathbf{n}}{\eta} \times \frac{\pi}{30}$	W	Lead screw:	
$P = \frac{M \times n}{\eta} \times \frac{\pi}{30} \times \frac{1}{1000}$	kW	$\mathbf{M} = \frac{\mathbf{F} \times \mathbf{p}}{2000 \times \pi \ \times \eta}$	Nm
Torque		Toothed belt:	
$M = F \times r$	Nm	$v = \pi \times D \times n$	m/min
$M_{A} = \frac{P \times 9550}{n} \times \eta$	Nm	$m = \frac{D}{z}$	
		$D = \frac{z \times t}{z}$	

Units used

M = torque in Nmv = velocity in m/min M_A = delivered torque in Nm ω = angular velocity in rad/s n = revolutions/min. r = radius in mP= power in kW or W $\eta = \text{efficiency (motor)}$ \dot{F} = force in \dot{N} D= diameter in m m = modulez = number of teeth p = pitch in mm/revt = distance between teeth in mm Ps = transmitted shaft power P= necessary motor power

1.1

Acceleration torque

$$M_a = \frac{J \times n}{t_a} \times \frac{\pi}{30}$$

Nm

For operation of electrical motors with gear transmission:

$$\mathbf{M}_{\mathrm{a}} = \frac{\mathbf{J}_{\mathrm{red}} \times \mathbf{n}}{\mathbf{t}_{\mathrm{a}}} \times \frac{\pi}{30}$$

Reduction of rotational mass moment of inertia

$$\mathbf{J}_{\text{red}} = \frac{\mathbf{n}^2}{\mathbf{n}^2_{\text{mot}}} \times \mathbf{J} = \frac{1}{\mathbf{i}^2} \times \mathbf{J} \qquad \qquad \text{kgm}^2$$

Linearly moveable masses is reduced to the number of revolutions of the motor according to

Rotational mass moment of inertia of a solid cylinder

$$J_{red} = 91.2 \times m \times \frac{v^2}{n_{mot}^2} \qquad \text{kgm}^2$$

$$\mathbf{J} = \frac{1}{2} \times \mathbf{m} \times \mathbf{r}^2_{y}$$

kgm²

Units used

Ma = acceleration torque in Nm

- J = rotational mass moment of inertia in kgm²
- n = number of revolutions in rev./min.
- t_a = acceleration time in s
- v = velocity in m/s

 $i = \frac{n_{mot}}{n}$ gear ratio

- J_{red} = reduced rotational mass moment referred to the motor shaft in kgm²
- n_{mot} = number of revolutions of motor in rev/min.

m = mass in kg

ry = outer radius of solid cylinder

s

Formulas and Units

1.1

Acceleration and deceleration time

$$t_{a} = \frac{J \times n}{9.55 \times M_{a}}$$

Braking work

 $A = \frac{M_{b}}{M_{b} + M_{L}} \times \frac{J_{red} \times n^{2}_{mot}}{182.4} \qquad \text{Ws}$

Necessary power for linear movement

$\mathbf{P} - \frac{\mathbf{F} \times \mathbf{v}}{\mathbf{F} \cdot \mathbf{v}}$	kW
$\Gamma = \frac{1}{1000 \times \eta}$	

Force at sliding friction

$F = m \times g \times \mu$	Ν
-----------------------------	---

 η = efficiency of linear movement

Units used

Ma = acceleration torque in Nm	μ = friction coefficient	
M _b = braking torque in Nm	J _{red} = reduced rotational mass moment of inertia referred to the motor shaft	
M _L = load torque reduced to the		
motorshaft in Nm	n _{mot} = number of revolutions of motor in rev/min.	
t_a = acceleration time in s	P = power in kW	
J = rotational mass moment of inertia in $1 - 1 - 1 = 1$	•	
kgm ²	F = force in N	
n = Number of revolutions in rev./min.	v = linear velocity in m/s	
W = work in Ws or J	m = load in kg	
	$g = gravity (9.81 m/s^2)$	

MVJ

1.1

Frictional force during linear movement using wheels or rails

$$\mathbf{F} = \frac{2 \times \mathbf{m} \times \mathbf{g}}{\mathbf{D}} \times (\mu_1 \times \frac{\mathbf{d}}{2} + \mathbf{f}) \times \mu_2 \quad \mathbf{N}$$

By approximate calculations it is often simple to use the specific running resistance R in N/ton carriage weight by calculation of the required power.

Formulas and Units

$$P = \frac{R \times q \times v}{1000 \times \eta} \qquad \qquad \text{kW}$$

Heavier carriages on rails, roller bearings R = 70 - 100N/ton

Lighter carriages on rails, roller bearings R = 100 - 150 N/ton

Units used:

F = force in N	μ_1 = bearing friction
m = load in kg	μ_2 = rail- or side friction
g = gravity	v = velocity in m/s
D = wheel- or roller diameter in m	$\eta = efficiency$
f = rolling friction radius	q = load in ton
d = shaft diameter in m	

Rolling friction radius, f (m):

Steel against steel	f = 0.0003 - 0.0008
Steel against wood	f = 0.0012
Hard rubber against steel	f = 0.007 - 0.02
Hard rubber against concrete	f = 0.01 - 0.02
Inflated rubber tire against concrete	f = 0.004 - 0.025

Bearing, rail- and side friction:

Roller bearings $\mu_1 = 0.005$ Sliding bearings $\mu_1 = 0.08 - 0.1$ Roller bearings $\mu_2 = 1.6$ Slide bearings $\mu_2 = 1.15$ Sideguides with rollerbearings $\mu_2 = 1.1$ Roller guides side friction $\mu_2 = 1.8$

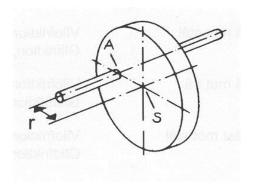
Version:

1.1

SI - Units

	Symbol	Measure	Unit	
SI basic units	m	length	metre	
	kg	mass	kilogram	
	S	time	second	
	A	electrical current	ampere	
	K	temperature	Kelvin	

	Designation	Measure	Unit	Symbol
For Motion Control	а	distance	metre	m
	α,β	angle	radian	rad
	_	angle	degree	0
	d	diameter	metre	m
	h	height	metre	m
		length	metre	m
	r	radius	metre	m
	S	distance	metre	m
	V	volume	cubic-metre	m³
	а	linear acceleration		m/s²
	ŵ	angular acc.		rad/s ²
	f	frequency	Hertz	Hz
	g	gravity		m/s ²
	n	revolutions per unit	rev./min.	1/s
	W	angular velocity		rad/s
	Т	time constant	second	S
	t	time	second	S
	V	linear velocity		m/s
Mechanical	F	force	Newton	N
	G J	weight force	Newton	Ν
	J	Rotational mass moment of inertia		kgm ²
	М	torque	Newtonmetre	Nm
	m	mass	kilogram	kg
	Р	power	Watt	Ŵ
	W	energy	Joule	J
	η	efficiency		
	μ	friction coefficient		
	i	gear ratio		
Electrical		current	Ampere	A
	P	active power	Watt	W
	R	resistance	Ohm	Ω
	S,Ps	appearent power	Voltampere	 W, VA
	U	voltage	Volt	V V


The rotating mass moment of inertia of rotating bodies

Body	Rotation	Symbol	Rotational mass moment of inertia, J in kgm ²
Hollow cylinder	Around own axis		$m \times r^2$
Homogeneous cylinder	Around own axis		$\frac{m}{2} \times r^2$
Thickwalled cylinder	Around own axis	-	$\frac{\mathrm{m}}{2} \times (\mathrm{r}^{2}_{1} + \mathrm{r}^{2}_{2})$
Disc	Around own axis	\bigcirc	$\frac{m}{2} \times r^2$
Disc	Around own plane	\rightarrow	$\frac{m}{4} \times r^2$
Sphere	Around own center		$\frac{2 \times m}{5} \times r^2$
Thinwalled sphere	Around own center		$\frac{2 \times m}{3} \times r^2$
Thin rod	Perpendicular around own axis		$\frac{\mathrm{m}}{\mathrm{12}} \times \mathrm{l}^{2}$

Steiners Equation

Rotational mass moment of inertia relative to a parallel shaft in the distance a

$\mathbf{J} = \mathbf{J}_0 + \mathbf{m} \times \mathbf{r}^2$	kgm ²
J ₀ = rotational mass moment of inertia relative to the center of gravity axis	kgm²
m = mass of the body	kg
r = shaft distance	m

MVJ

1.1

Correlation between rotational mass moment of inertia and rotating mass

Formulas and Units

 $J=m\!\times\!r_{_J}{}^2$

kgm²

Units used:

J = rotational mass moment of inertia in kgm²

m = mass in kg

r_J = inertial radius in m

The efficiency for different types of drives are often values obtained by experience:

Some normal values for parts with rollerbearings:

Drive belt with 180° force transmitting angle	$\eta = 0.9 - 0.95$
Chain with 180° force transmitting angle	$\eta = 0.9 - 0.96$
Toothed rod	$\eta = 0.8 - 0.9$
Transporting belt with 180° transmitting angle	$\eta = 0.8 - 0.85$
Wire with 180° transmitting angle	$\eta = 0.9 - 0.95$

The friction values are difficult to give correctly and are dependent on surface conditions and lubrication.

Some normal values:

Steel against steel	static friction, dry dynamic friction, dry static friction, viscous dynamic friction, viscous	$\begin{array}{l} \mu = 0.12 - 0.6 \\ \mu = 0.08 - 0.5 \\ \mu = 0.12 - 0.35 \\ \mu = 0.04 - 0.25 \end{array}$
Wood against steel	static friction, dry Dynamic friction, viscous	$\begin{array}{l} \mu = 0.45 - 0.75 \\ \mu = 0.3 - 0.6 \end{array}$
Wood against wood	Static friction, dry Dynamic friction, viscous	$\begin{array}{l} \mu = 0.4 - 0.75 \\ \mu = 0.3 - 0.5 \end{array}$
Plastic against steel	static friction, dry Dynamic friction, viscous	$\begin{array}{l} \mu = 0.2 - 0.45 \\ \mu = 0.18 - 0.35 \end{array}$

1.1

The twisting torque on a shaft from a pulling force is according to the following

$$M = F \times r \times \eta = F \times \frac{d_0}{2} \times \eta \qquad \qquad \text{Nm}$$

Units used

Efficiency, η

F = cross force	Toothed wheel	= 0.95
M = twisting torque	Chain wheel	= 0.95
d _o = effective diameter on toothed wheel or chain wheel	Toothed belt	= 0.80
	Flat belt	= 0.40
$\eta = efficiency$	Flat belt, pre-tensed	= 0.20
r = radius in m		