Start-Up of PC and Program

By means of a terminal emulation program (PROCOM, BETTY, etc.) the PC is set to the
following data format:

Start bit: 1

Data bits: 8 (7 bits ASCII + ignored parity)

Stop bits: 2

Duplex: full

Baud rate: 300, 600, 1200, 2400, 4800, 9600 or 19200
CR = LF: no

If the Trimatic terminal program TIM-TERM is used, setting of the data format is not required.
Just insert the disk with TIM-TERM, turn on the PC, and it will automatically start up with
correct setting of the communication port.

When starting CSDU 2100 up with a PC connected, it is important that supply voltage is
connected in the proper order because of the autostart detection carried out by the stepper motor

controller: When supply voltage is connected, the system begins to detect whether a PC has been
connected.

If not, all data communication attempts are ignored, and the user program in the CSDU 2100
controller will automatically be exccuted.

However, if the detection at start-up indicates that a PC has been connected, the controller will
not automatically execute the user program but wait for start of data communication.
Consequently, the correct start—up procedure is as follows:

1) Tumn off CSDU 2100,

2) Connect RS232 cable between controller and PC.

3) Turn on PC and start terminal program.

4) Then afterwards turn on CSDU 2100.

5) Press the "RETURN" —key at least twice.

CSDU 2100 has now automatically detected the baud rate and will display a status listing on the
screen. Program version No. and capacity of the RAM inserted will also be displayed.

A caret (">") indicates that the program is ready to receive entry of commands.

Programming Instructions

After having started up the system as deseribed in the previous section, the controller is ready
for programming.

This section describes the process of programming, but note that the exercises will cause anv
program already entered into the controller to be crased.

DIRECT EXECUTION OF A PROGRAM
First enter:

>E!

and terminate the line by pressing "Return”. (In this and the following examples anything entered
from the terminal is underlined and all input lines arc terminated by pressing "Return”).
Controller responses are boldfaced.

A moment later, the controller will respond by showing a:

=

in order to indicate that the command has been accepted.

An "ERASE" command has just been given erasing the program and setting the values to default
values, i.e. speed is 2000 Hz (steps/sec.), length is 2000 steps, and the direction is forward.
Enter:

>R

and the command (meaning "RUN motor”) will immediately be exccuted: the motor will run
forwards 2000 steps.

Several commands can be entered on the same line:
=R W3l00 R

The motor will run for 2000 steps, wait 3 seconds ("WAIT 3000 millisecs.”} and then run for
another 2000 steps.

To change the direction of the motor use the "D" (DIR) command:

*DORDIR

The motor will run 2000 steps forwards and then the same length — but now backwards. To
change the maximum speed enter e.g

>51000
which will set the speed ("SPEED") to 1000 Hz.

Once the values are changed, it might be useful to see a listing of the present values. This is done
by using the "STATUS" command:

7

and a status listing will be displayed in the same way as at start—up of controller.

AUTOMATIC EXECUTION OF A PROGRAM

In order to enter a program for future automatic execution the line numbers are entered followed
by the commands:

>10 DO R

>20 W1000
=30 D1 R

>

In order to start the program enter:

=G

(meaning "GO") and the controller will respond:
Executing.....

and the program will be exccuted from the first line. The motor will run forwards, wait 1 second,
and then run backwards. After execution of the last line (line 30), the program will automatically
start from the beginning and execute line 10, line 20, line 30, line 10 cic.

The execution of the program is stopped by entering:

H

for "HALT", and the controller will for instance respond:

20 W1000
*

.Halted

The asterisk "*" indicates the position of the program when it was halted. The entire program will
be listed by entering:

=LIST

10 DO R
20 w1000
WDIR
=

In order to correct a command the line in question must be reentered:

9

>20) W00
and the old line will be replaced by the new one:

>LIST
10 DO R
20 W500
JI0DIR
-

New lines can be inserted between the existing ones:

>25 ' INSERTE

>LINT

10 DO R

20 Ws00

25 ! INSERTED LINE
WDIR

-

A line can be erased just by entering of line number:

225
>LIST
10 DO R
20 W00
WODIR
-

To erase the entire program (and reset to default values) enter:

>E!

and a LIST command will show that there is no longer a program present.

10

Below three programming examples are shown which may be used as starting points for more
advanced programming.

Example 1

Description: As long as input port 2 is activated, the motor will run one revolution (400 steps)
forwards and one revolution hackwards.
Output port 1 indicates that the motor runs forwards.

5 1400 ! Length
10 WI2 ! Wait until input port 2 is active
20 01,1 ! Turn on output port 1
30 DOR ! Run forwards
40 01,0 ! Turn off output port 1
50 D1 R ! Run backwards
Example 2
Description: When input port 3 is activated, the motor will run for a length dependent on input
ports 1 and 2.
Length ~ Input port 2 Input port
100 0 0
200 { 1
300 1 0
400 1 1

Then the program will wait until input port 3 becomes inactive, and the motor will return to the
starting point.

10 W13 ' Wait until input port 3 is active

20 I/1 1/2 L100 ! Inp 1=0FF Inp 2=0FF ——-> length=100
3011 1,2 L200 ! Inp 1=ON Inp 2=0FF —--> length=200
40 I/1 12 L300 ! Inp 1=0FF Inp 2=0N ---> length=300
5011 12 L1400 !'Inp 1=ON Inp 2=0ON ---> length=400
60 DO R ! Run forwards

70 WI/3 ! Wail until input port 3 is inactive

80 DI R ' Run backwards

11

Example 3

Description: The first time the program is started, a zero—position search will be performed
(defined by input port 4). Then 10 lengths of 400 steps will be run forwards with a minor pausc
between each length. Then the motor will return to the starting position and again run 10 lengths
ete.

10 Z ! Search for zero-position

20 N10 ! Set loop counter

30 (L400 DO R W300) P10 * length forwards, pause 300 msces.
40 PO R ' Run to position ()

50 G20 ' Go to line 20

Description of Registers

The stepper motor controller contains a number of registers cach with a numerical value for the
usc of the motor or the system.

By means of PRO TIM 3 monitoring and changing of these registers are possible so that length,
speed, acceleration ete. can be manipulated.

Most of these registers will appear from the status listing as shown at the start of PRO TIM 3,
and a division of these registers into three groups is natural.

SETUP/INITIALIZE: The registers in this group are used for adjusting the controller to the motor
type and mechanics applied. These values are usually set once for all. First of all the acceleration
table that the controller uses at start and stop of motor should be specified. This is a cosine curve
which is determined by the following registers:

B: "Fmin" (lowest frequency) from which the motor starts the acceleration. This value must
be within the start/stop frequency range of the motor.

SM: "Fmax" (absolutely highest frequency) for which acceleration table is calculated.
The actual running speed (S "Speed") can freely be set between Fmin and Fmax.
Therefore the Fmax value should be set at a value corresponding to the maximum speed
at which running will take place in practice. Of course Fmax can also just be set at the
maximum value that the controller can handle (25000 Hz), but this mav result in an
unnecessarily rough resolution on the calculated acceleration table.

A5 "Accceleration Step” determines the total number of steps to be covered by the table from
Fmin to Fmax.

Determination of these values depends on the motor type used, the weight of the component to

be moved, moment of inertia etc. This can partly be calculated from for instance the motor data
sheet, but experience shows that final determination of the values can take place only by means
of practical tests using the customer's device.

Setting of motor current takes place by means of two commands:

PR "Power Run" determines the motor current when the motor is running. The value specifies
the current per motor phase and is typically set 40% higher than the rated value of the
motor (as the rated value states current per winding).

PS: "Power Standby" determines the motor current when the motor is standing still. Usually
it is set at a lower value than PR in order to limit the heat generation. It may be sct as
low as 0, but then the motor will have no holding torque.

L "Conversion Factor" determines the conversion ratio, ¢.g. number of steps per length or

position unit. By setting the conversion ratio at an appropriate value, distances can
immediately be programmed in for example degrees or millimetres. The conversion factor

13

is the only value for which decimal numbers can be specified. This means that conversion
also can be made for uneven gearings.

ACTUAL MOTOR: The registers in this group control the parameters which actually will be used
for next run of motor.

L "Length" determines the running length of the motor in question and is used for control
of a relative distance.

D "Direction” determines direction in connection with relative motions.

P "Position" states the current position of the motor in question compared to the mechanical
P g p
zero—position. When a position command is given, the controller will internally convert
the new position to a direction and relative length.

5 "Speed" specifies the speed that the motors actually are to run. This value can freely be
set between B (Fmin) and SM (Fmax). The program calculates automatically how large
a part of the acceleration table will then be used to reach from Fmin to Speed. This value
can be read under the headline "Actual Fmin—to-5Speed Acceleration”.

SYSTEM: States status of parallel input/output and thumbwheels {(preselection) or kevboard/dis-
play.

Note that inputs 5-8 and thumbwheels are available only when a special thumbwheel circuit
board 1s connected to the 26—wayv conncctor. In case KD2 (keyboard/display) is connected
instead, the controller will display the contents of register K (Kevboard code) and status for input
ports 1-4.

In addition to the registers shown here there also are:
N "Counter” register which is used for control of number of loop executions.

UA, UB, UC UZ "User Registers” which are 26 registers for general use. The contents of
these registers will be displaved when entering:

=17

14

Commands

GENERAL
In this section all commands as well as syntax, minimum and maximum limits arc described.

Most commands consist of a name followed by a numerical value. E.g. the syntax for a length
command is:

L<n>
where <n> states the associated numerical value meaning that it can be entered as for instance:

LA423
L5899

The following rules apply to commands and numerical values:

1. Capital and small letters can be used at will which means that
LIST
list

LiSt

all have the same meaning.

[

All values are positive meaning that the minus sign "~" will not be accepted.

All values must be integers except for C (conversion factor) being the only command
which accepts decimal values.

4. A space between a command and the associated value(s) is not allowed.
The following examples arc correct:

L7800
01,0
RUI4

but the following examples will result in an error message:

L. 5680
01,0
RU 4

Lh

A space must be used to separate individual commands, Usually the controller is able to
interpret the line correctly even if there is no space between the individual commands.
However, there arc combinations of letters which might give rise to doubts.

EXPLANATION OF COMMANDS
Command: A (ACCL CALC)

Calculates a new acceleration table based on the values of B (FMIN), SM (FMAX) and AS
(ACCLSTEP). The acceleration curve pattern is described in the section: "Process of Motor
Running” which also explains when this command automatically will be executed by the
controller.
In order to calculate a new acceleration table the following conditions must be met:

FMIN must be between 100 Hz and FMAX.,

FMAX must be between FMIN and 25000 Hz.

If these conditions are not met, an error message will be displaved, and the acceleration table will
remain unchanged.

Command: AS<n> (ACCL STEPM)

Specifies <n> number of steps to be used for accelerating from B (FMIN) to SM (FMAX).
Minimum is 1 and maximum is 65535 steps.

If S (SPEED) is sct to a lower value than Fmax, only part of the specificd <n> steps will be used
for accelerating.

A corresponding number of steps will be used for decelerating.

Example:
AS3000 ! 3000 steps from Fmin to Fmax

Command: B<n> (FMIN STARTSPEED)

Specifics start speed for acceleration expressed in <n> Hz. The value <n> must be greater than
or equal to 100 Hz and less than the SM (FMAX) value.

Example:
B300 ! 300 Hz start speed

Command: BK<n> {(BREAK TIF INPUT HI)
BK/<n> (BREAK IF INPUT LO)

Starts automatically monitoring of input <n> during all following program execution. Monitoring
of only one of the inputs 1-4 is possible.

By means of this command an emergency stop function can be established so that break of
program execution is possible under all circumstances: in case of motor running, when waiting
for timer or another input, when calculating and in case of program loops, cte. If the input in
question some time becomes activated, the normal program cxecution will be interrupted and the
program will go to the command immediately after the "BK" command. At the same time the

motor is automatically stopped and the outputs turned off. It is now up to the programmer how
to continuc.

16

The break function may be summed up in the following items:

b

4.1.

When the program meets the "BK" command, an internal monitoring function is activated,
and the program will ignore the rest of the line in question. The program will thus in
normal operation just continue the execution on the next line.

Afterwards exccution of the "BK" command is not required any more as the program
continuously will monitor whether the input in question becomes activated. If just an input
number has been specified, monitoring will be cffected whether this input is high =
activated. If there is a "/" before the input number, monitoring, is inverted, and instead test
is made whether the input is low = not activated.

If the input becomes activated, the following course of cvents will take place:

The motor decelerates and stops.

‘The controller has now lost all information of the absolute position of the motors.
Outputs 1 and 2 are turned off.

Monitoring will be cut out (otherwise a break would be followed by a break which would
be followed by a break)

The execution of the program continues from the first command after the "BK" command.

It is now up to the programmer how to continue a program after a break. A GOTO
command will typically be placed after the "BK" command, and the execution of the
program will continue with a small program handling this emergency stop. Here it is
necessary to wait for the emergency stop signal to be removed before restart of main
program. Otherwise a new break will be effected at once.

Usually it would be most practical to restart the main program by going to the beginning
of this program. This is due to the following circumstances:

After an emergency stop it is not possible to find out where the program was interrupted.
Therefore, it is not possible to retun and continue directly from there.

After an emergency stop the controller has lost information about the absolute position
of the motor. For most setups this means that a zero—pos. search (mechanical zero posi-
tion) is required before program execution can continue.

The break monitoring must be re—activated, and this command will usually be placed in
the beginning of the program.

The following example demonstrates a typical use of the break function and a typical handling
of restart of the program:

5 BK2 G60000 'Break if in2=0N to line 60000

10 Z

' zero-pos scarch ——————————--

100 !***** maijn program *****

110 command ... All this is
120 ... command ... tested for
. more command ... input 2
... last main command
S0000 G100 repeat main program —---—-———————
60000 !™*** Break handling ****
HO010 W1/2 “wait until break removed
60020 G5 Irestart program

17

Command: C<n> (CONVERSION FACTOR)

Specifies conversion ratio between step and length/position units. <n> indicates number of steps
per length or position unit. By means of this command programs can be constructed with all
distances stated in millimetres, and it is only required in the beginning of the program to state
how manv steps per millimetre.

The "C" command is the only command accepting decimal values to specifv <n> meaning that
also conversion with non—integer conversion ratios is possible. Up to 4 decimals will be accepted.
Maximum conversion ratio is 167(,9999 steps per length or position.

If a conversion ratio with decimals is specified, conversion into steps may leave a remaining
value being a fraction of one step. The controller cannot immediately run this remaining value
as only integer number of steps can be run. However, this remaining value will be stored in an
internal register and will be included in the calculation of numbers of steps for subsequent runs.
In this way an accumulation of rounding off errors is avoided, and the deviation will always be
less than one step.

After a zero-position search (by means of the Z command) the remaining value register will be
reset, as the motor now is at the absolute zero position.

Example: Distances are requested to be entered in mm, and a gearing is used with 1 mm motion

for every 2.735 steps. The motor is to run four lengths forwards: 10 mm, 15 mm, 5 mm and 7
Imn.

The program is entered as follows:

10 C2,735 ! Conversion: step per length
20 DO ! Direction forward
JOLIDRLIS R ! Run 100 mm - Run 15 mm
SOISRITR ' Run 5 mm - Run 7mm

70 H ! Halt program

18

When this program is executed, a conversion will take place internally in the controller as
follows:

Length Calculated Steps Remaining
mm steps run sleps
0
10 27,35
0,35
> 2]
+= 0,35
15 41,025
0,025
41
+= 0,375
5 13,675
0,675
13
+= 1,05
(Extra step) 1
-= 0,05
Total: 82,05 82 (0,05
Command: D<n> (SET DIRECTION)

Specifies rotational direction of the motor, DO is defined to mean "forwards”, and D1 means
"backwards".
Naturally the actual concept of forwards and backwards depends on the mechanical construction.

If the motor runs in the wrong dircction, this is corrected by exchanging the motor connections

as described in "CS5DU 2100-1 Hardware Manual” under the secction "STEPPER MOTOR
DRIVER".

19

Command: E! (ERASE PRGRM & SET TO DEFAULT)

Erases the program entered and sets the variable registers to default values:
Fmin (B} = 300 Hz
Fmax (SM) = 8000 Hz
Acceleration Step (AS) = 10000 steps
Power Run (PR) = 1000 mA
Power Stop (PS) = 0 mA
Length (L) = 2000
Speed (S) = 2000 Hz
Conversion Factor (C) = 1 step/length unit
Note that the program cannot be recovered once it has been erased.

Command: G (GOTO FIRST LINE)

This command is used to start the execution of the program entered into the CMOS memory.
If this command is entered direct from the terminal, the program entered into the CMOS memaory
will start from first line.

If this command is included in the program in the CMOS memory, the execution of the program
will continue from first line.

Command: Gen> (GOTO LINE NO.)

As above command, the only difference being that the line number (1-63000) is specified. By
means of this command it is possible to go to any line in the program and continue the execution
of the program from here.

Example: 10 PRINT "Start here...."
20 G200
100 PRINT "....and ¢nd here”
110 W2000 G10
200 PRINT "...continue here...."
210 G100

Command: GS<n> (GOTO SUBROUTINE)

This command is used to go to a subprogram. The value <n> specifies to which line number the
program is to go. This command corresponds to an ordinary "G" GOTO command, but here the
program will memorize where it came from. By terminating the subprogram with a "RET"
command, the program will return to the place from where the subprogram was called.

It is advantagcous to use subprograms if a particular process of motor running is to be exceuted
from various places in a main program. In this way it is only necessary to enter this particular
process of motor running once and place it separately after the main program. It is now possible
to go to this subprogram from various places, and the subprogram will alwavs returr to the ri ght
place in the main program and continue from here.

20

A subprogram may go to a new sub-subprogram which again may go to a new sub-sub-
subprogram etc. up to 16 subprograms.

Example: The motor is to run different consecutive lengths. Each time a motion has been
completed, output 1 is to pulsate 10 times. The construction of the program includes a main
program carrying out the motions, and a subroutine taking carc of pulsating the output:

10 L100 R ! Run small length

200 GS2000 ' Gosub & pulsate

30 L1000 R ! Run next length

40 GS2000 ! Gosub & pulsate

50 L5000 R ' Run last length

60 GI2000 ! Gosub & pulsate

70 G10 ! Repeat main program
2000 **** Subroutine pulsating output 1 ****=*** =%
2010 n10 ! loopcounter = 10 pulses
2020 (01.1 w500 01.0 w300) ! do the pulses
2030 RET ! return to caller

Command: H (HALT)

Halts execution of program, turns off outputs 1 and 2, decelerates and stops motor. The HALT

command can be used any time to stop the controller, not just in connection with run of motor,
but also in connection with printing of text etc.

Command: HM=<n> (SET HOME)

The "Home" command is used to specify a home position being displaced compared to the
mechanical zero position. When the mechanical zero position has been reached (by means of the
"ZERO-SEARCH" command) the controller position register will automatically be set to zero
at the edge of the zero position sensor. By means of this "HOME" command it may freelv be
specified that the present position of the motor is given a new position value.

This is effected by entering the "HOME" command with its <n> value direct into the position
register without running the motor. In this way the absolute position will be displaced compared
to for instance the zero position found by means of a mechanical zero—position search.

Example: In connection with a machine for cutting off components the length of the component
is sct by the stepper motor. As the mechanical zero position could not possible be positioned at
the actual zero position (as it would then collide with the saw blade) instead it is positioned 200
steps displaced compared to the zero position. In such a case the program may appear as follows:

10 Z ! Search mechanical zero position
20 PRINT "After zero pos. scarch pos. register=0

30 HM200 ! Set displacement

40 PRINT "But without running of motor pos. register=200
S0 H ' HALT

21

Command: I<n> (IF INPUT ACTIVE)
L'<n> (IF INPUT NOT ACTIVE)

If the condition for the input port in question is met, the remaining part of the line will be
executed. If the condition is not met, the remaining, part of the line will be ignored.

The following example will turn on output port 2, if input port 3 is active (i.e. there is logical
"HL" at the input port):

13021

The next example will tum on output port 2, if input port 3 is not active (i.e. there is logical
"LO" at the input port):

I/3 02.1

Command: IF <expl> <cond> <exp2> (IF condition TRUE)

This command compares two numerical values and executes the remaining part of the line if the
condition is met. <expl> and <exp2> specify the two numerical values and each may be a simple
numerical value (as for instance 456), the content of a register (as for instance S or L or UA),
or a long complete arithmetic expression (as for instance 4*L+UA+B).

<cond> specifies the condition to be met and must be one of the following types:

<cond=> Condition met if
< less than
= cqual to
> greater than
<= less than or equal to
>= greater than or cqual to
<= not equal to

If the condition is met, the remaining part of the line will be executed. If the condition is not met,
the remaining part of the line will be ignored, and the program will just continue to next line.

Examples:
IF 5=2000 PRINT "Register S is equal to 2000 Hz"

In the example above the remaining part of the line (i.e. the PRINT command) will be executed
only if it is true that register S contains 2000.

IF UA+4 <= L+42 nl0 {(01.1 w500 01.00 w500))

)

Farras

In the example above each of the two expressions will be calculated. Then a comparison will take
place meaning that a test is made whether the sum of UA and 4 is less than or equal to the sum

of L. and 2. If this is true, the remaining part of the ling will be executed, meaning that output
port 1 is pulsated 10 times.

As it appears rather complex comparisons can be made. The syntax for each of the two
expressions <expl=> and <exp2> corresponds to "General Rules applying to Arithmetic" of which
a further description follows in the section "ARITHMETIC CALCULATIONS" which also
describes how the calculations are made and which registers may form part of the expressions.

Command: J (JOG MOTOR)

This command functions in the same way as "R" RUN MOTOR, the only difference being that

JOG runs at the speed FMIN (specified by the "B" command), and docs not accelerate or
decelerate.

Command: JUl<n> (JOG UNTIL INPUT ACTIVE)
JUl<n> (JOG UNTIL INPUT NOT ACTIVE)

These commands function in the same way as "RUl<n>" RUN UNTIL INPUT ACTIVE and
"RUI/<n>" RUN UNTIL INPUT NOT ACTIVE, the only difference being that JOG runs at
the speed FMIN and does not accelerate or decelerate.

Command: Le<n> (LENGTH)

Specifies length to be run. When an R (RUN) command is given, the motor will run:
Number of steps = LENGTH * CONVERSION FACTOR

If "conversion factor” = 1, number of steps = LENGTH

Maximum number of steps is 16000000 steps.

Command: L* (UNLIMITED LENGTH)

Specifies unlimited length, i.e. continuous running. This command is usually used in conjunction

with a "RUI RUN-UNTIL-INPUT" command where the length of running only depends on an
input level,

Command: LIST (LIST PROGRAM from start to end)
LIST<n> (LIST PROGRAM from <n> to end)
LIST-<n> (LIST PROGRAM from start to <n>)
LIST<pn>-<m> (LIST PROGRAM from <n> to <m>)

2
Led

Lists the program entered. The program will be listed exactly as stored in the memory, i.e. sorted
in numerical order.

If just a LIST command is entered, the entire program will be listed, from start to end, everything
contained in the memory. If a LIST command followed by numerical value(s) is entered, it is
possible to have part of the program listed defined by the line numbers specificd.

If for instance the command
LIST200)
is entered, the program will be listed from line 200 to end of program.

If the command
LIST-200
18 entered, the program will be listed from first line to line 200,

If the command
LIST100-300
1s entered, the program will be listed from line 100 to line 300.

Command: Ne<n> (COUNTER)

Sets counter to <n> times execution of program loop. Maximum value is 65535, This command
is usually used in connection with:

((LOOPSTART)
) (LOOPEND)

The bracketed commands will be executed <n> times,
The following example will make the motor run 4 times:

N4 (R)
Several lines may be used for the program loop:

10 N10

20 L4000

30 (R

40 PRINT "Counter N =" N

50) PRINT "End of program loop"

Note that the program loop will always be executed at least one time, because the counter is not
checked until the end of a loop.
Conscquently, this example:

(L234 R)

will make the motor run at least one time cven if the counter "N" wos set to zero at the time
when the command was entered.

24

