Command: 0O<n>,1 (SET OUTPUT)
0<n>,0 (RESET OUTPUT)

Turns on or tumns off one of the two optically isolated output ports <n>. Positive logic is used
so if a RESET command is entered, the output port becomes low and the output port transistor
becomes inactive. If a SET command is entered, the output port becomes high and the output port
transistor "ON" (i.e. conducting).

The two output ports are referred to as 1 and 2 being the only allowable values for <n>.

Example:
02,0 ! Reset output port 2 (i.e. inactive)
01,1 ! Set output port 1 (i.e. active)

Command: P<n> (POSITION)

This command is used for calculating a length related to an absolute position.

Internally in the controller there is a position register which for cach run keeps track on the
distance run by the motor relative to the absolute zero position (usually run to by a Z (ZERO-
POS) command).

The register will not be updated until the motor has run a length: If the direction was forwards

(DO), the length is added to the register; if the direction was backwards (D1), the length is
subtracted from the register.

When a P (Position) command is entered, a value for length and direction is calculated.

The length will be the difference between the position value <n> requested and the present
position. The direction will be set to forwards if <n> is greater than the present position, and the
direction will be set to backwards if <n> is less than the present position.

In this way the absolute value specificd has been converted into a relative value, so that the
correct length will be run when the next "R” RUN MOTOR command is given.

When using the position register the following limitations apply:

1. Position cannot be calculated when a continuous (unlimited) run is performed, i.c. when
using a "L*" "Unlimited length" command.

[

[f the motor running is stopped before the motor has completed its length, for instance
because of "H" Halt or "RUI" Run Until Input Activated, the position register will be
compensated for the distance that the motor did not run. However, this compensation is
cffected only if "C" Conversion Factor = 1, i.c. number of steps = number of units of
length. This is due to the fact that otherwisc the length calculation remainder might be a
decimal number which would just be rounded off to an integer when summing up the
position register,

In this way it might be risked that a fraction of a position value would be lost. Such a

rounding off error will not occur if the conversion factor "C" is 1 meaning that number
of steps = units of length.

3. The position register cannot obtain negative values, and consequently a po ion fu e
backwards than the absolute zero position cannot be specified.

Command: PRe<n> (MOTOR POWER RUN)

Specifies motor current when the motor is running. The specified current is per phase and is
expressed in <n> milliamp. Most motors have a rated value specifying allowable motor current.
However, on this rating plate motor current is stated per winding (contrary to PRO TIM 3 which
specifies current per phasc). Consequently, in practice the motor current can be set approx. 40%
higher than the rated value.

Example: The motor used has a rated valuc of "4.2A".
POWER RUN is set 40% higher than the rated value (and is converted into milliamp.):

PR5900

Minimum value is 1000 mA.
Maximum value depends on the type of driver being used:

Type of Driver Max. Motor Current
-5 5000 mA
=75 7500 mA
-10 10000 mA

Command: PRINT<text/reg>

Prints on the screen the remaining part of the line as text and/or the contents of the registers. In
general the syntax corresponds to Basic, text is in inverted commas:

PRINT "Hello world"
Hello world

and the content of a register will be printed just by stating the name of the register:

PRINT L
12600

Text and content of a register may be combined in one line:

PRINT "The content of register L = "L" millimetres"
The content of register L = 12600 millimetres

26

Usually subsequent printing will continue on the next line as a carrige return/line feed
automatically is added after a print command. However, a semicolon at the end of the line can
suppress this:

10 PRINT "Here is some text....";

20 PRINT "...and here is more on the same line”
30 H

G
Here is some lext.......and here is more on the same line

Command: PS<n> (POWER STOP)

Specifies motor current expressed in <n> milliamp. when the motor is standing still. This
determines the holding torque and is usually set to a lower value than the operating current PR
in order to limit the heat generation of the motor.

Minimum value is 0 mA which makes the motor completely currentless.
Maximum value 15 4000 mA.

Example: The rated value of the motor is "4.2 A", but in order to avoid overheating of the motor

the standby current is set to a much lower value. Therefore it is set to 2 Ampere corresponding
to 2000 mA:

PS2000

Command: R (RUN MOTOR)
Starts the motor and runs a number of steps derived from the formula:
Total steps = LENGTH * CONVERSION FACTOR

At starting up of motor it accelerates from FMIN (specified by the "B" command) up to SPEED
(specified by the "S" command) following a cosine curve,

Then the motor will run at a constand speed, decelerate and stop when one of the following
conditions 15 met:

The calculated number of steps has been completed
or

a "HALT" command is entered
or
a "BREAK" function is released

The motor will always decelerate following the same cosine curve as used while accelerating,

Not until the motor has completed running the execution of the program will continue to the next
command.

See the section "Process of Motor Running” for a further description.

27

Command: RET (RETURN FROM SUBROUTINE)

Returns from a subprogram so that the execution of the program continues from where the
subprogram was called. By means of the "GS" command you can go to a subprogram, and by
means of the "RET" command you can return to where you came from.

Reference is made to the command "GS" (GOTO SUBROUTINE) for a further description.

Command: RUIl<n> (RUN UNTIL INPUT ACTIVE)
RUI/<n> (RUN UNTIL NOT ACTIVE)

These commands function as the "R" (RUN MOTOR) command except that the specified input
port is also tested.

The motor will decelerate and stop when one of the following conditions is met:
The caleulated number of steps has been completed

o1

the condition for the indicated input port has been met
or

a "HALT" command is given

or

a "BREAK" function is released

In the following example the motor will run until 2000 steps have been completed or until input
port 2 becomes active:

L2000 RUI2

In the next example the motor will run continuously as long as input port 3 remains active. When
the input port becomes inactive, the motor will stop:

L* RUIL/3

Command: R# (RUN MULTITASK)

This command starts the motor, and then it continues the execution of the program while the

motor is running. This is contrary to the ordinary "R" RUN MOTOR command which docs not
procced with the program until the motor stops running.,

This R# RUN MULTITASK command opens up possibilities of more advanced control patterns
as the program is capable of changing the registers dynamically while the motor is running.
Motor speed can for instance be changed, output ports can be turned on and off, and by means
of various special commands the execution of a program can be made dependent on the present
running;

WL<n> (WAIT UNTIL LENGTH REACHED)

WP<n> (WAIT UNTIL POSITION REACHED)

STOP (STOP MOTOR)

For further description, sce the section "Multitask Motor Running”.

28

Command: S<n> (SPEED)

Specifies present motor speed expressed in <n> Hz. The valuc <n> must be greater than "B"
(FMIN) and less than "SM" (FMAX).
The example below will run two lengths, first at 500 Hz, then at 2000 Hz:

10 B3040 ! Fmin=300 Hz

20 SM5000 ! Frnax=500{) Hz

30 AS1000 ! Acceleration = 1000 steps
40 L3000 I Length = 5000

S0 5500 R ' Run at 300 Hz

6O 52000 R ' Run at 2000 Hz

Command: SM<n> (FMAX)

Specifies the absolute top speed for which an acceleration table will be calculated.

SM is set equal to or greater than the speed "S" (SPEED) at which running actually will take
place.

Command: STOP (STOPI MOTOR ONLY)

Decelerates and stops the motor and then proceeds with execution of the program. This is
contrary to the "H" HALT command which stops the entire controller - both motor, outputs and
execution of program.

"STOP" is typically used in connection with "R#" RUN MULTITASK.

Command: UA<n> (USER REGISTER A)
UB<n= {USER REGISTER B)

+++++

PRO TIM 3 contains 26 user—defined registers: UA, UB, UC, UZ. These registers are not
attached to any particular function, but may freely be used by the programmer. Each register is
24 bits and can contain values from 0 to 16777215, The registers cannot contain decimal numbers
or negative values.

Numerical values or other register values can freelv be transferred to the user registers, and

altogether they can be used as described under the "IF” command and under "Arithmetic Calcula—
tions".

Below follows an example showing various applications of the user registers: Register UL is used
as a counter for repeat of a program loop 10 times. Register UA contains a value which will be

added to the length cach time a loop has been exccuted. In this way the motor will run a longer
distance for each loop being executed.

10 UASOO I Set increase of distance

20 UL10 I Counter start valuc

30 L2000 I Start length

40 1FEE*E% program loop *****

S0 R ' Run length

60 L=L+UA ! Increase of length + distance
70 UL=UL~-1 ! Subtract 1 from counter

80 IF UL > 0 G40 ! Repeat loop until counter zero
90 H

K| and: U*<n> (ALL USER REGISTERS)

This commands transters the value <n> to all 26 user registers UA, UB, UC, ... UZ. This may
for instance be useful if resetting all user registers in the beginning of a program is requested or
if they are requested to be sct to a known value. This does not take place automatically when

starting up the program as the user registers like all other registers are stored in CMOS RAM
with battery backup.

If for instance all user registers are requested to contain the numerical valuc 345, enter the
command:

U=*345

Command: U? (USER REGISTER STATUS)

Displays on the screen a survey of all user registers and the contents of these. This command is

uscful to get a survey of the values contained in the system.

Command: W<n> (WAIT TIME)

Waits for <n> number of milliseconds. Maximum wvalue is 65535 milliseconds.

Example:
W2000 I Wait 2000 msecs.

Command: Wlen> (WAIT FOR INPUT ACTIVE)
Wli<n>= (WAIT FOR INPUT NOT ACTIVE)

Waits until the condition for the indicated input port is met. The execution of the program will
not continue until afterwards.
If waiting is requested until input port 2 becomes active, enter:
WI2
or if waiting is requested until input port 3 becomes not active, enter:

WI/3

30

Command: WL<n> (WAIT UNTIL LENGTH REACHED)

The program waits until the length <n> is reached or passed after which execution of the program
continues. This command is used in connection with "R#" RUN MULTITASK for awaiting the
execution of the next command until the motor has run a specified length.

For further description, see the section: "Multitask Motor Running”.

Command: WP<n> (WAIT UNTIL POSITION REACHED)

Corresponds to "WL" WAIT UNTIL LENGTH REACHED, the only difference being that here
the distance is expressed as an absolute position instead of a relative length.

Command: 7 (ZERO POSITION SEARCH)

This command is used to bring the motor to a known mechanical starting point when starting up
the svstem. This is done by means of a sensor connected to input port 4:

The process of scarching for the zero position depends on whether this input port is activated
when the "Z" command is given:

If input port 4 is activated at the start of the zero—position scarch:

1. The motor will run at a speed = FMIN forwards just until the input port is not activated
any longer.

If input port 4 is not activated at the start of the zero—position search:

(it The motor will accelerate and run backwards at a speed = SPEED until the input port

b-d

If the input port is not activated any longer, the motor has passed bevond the zero switch
and will run forwards at a speed = FMIN until the input port becomes active again,

3 The motor will run forwards at a speed = FMIN just until the input port is pot activated.

The zero-position scarch will result in the motor being, positioned just at the edge of the zero
switch. The zero position has now been found, and the internal position register will be reset.

Mechanically the zero—position sensor is constructed as follows:
A. The sensor must be positive logic, i.c. input port 4 becomes "HIGH" when the sensor is

activated.

For inductive sensors this is usually described as Normally Open ("NO") logic, and with
PNP output.

B. ':l"hc Sensor 15. placed behind the normal operating range as the motor is running backwards
in order to find the sensor.

31

. When the motor runs fast towards the sensor, it does not stop instantaneously. Therefore,
some space behind the sensor must be available for the motor to decelerate without
meeting a mechanical blocking or "passing the edge". This safety distance should
correspond to the number of acceleration steps (specified by the AS command).

Command: ? (PRINT CS5DU STATUS)

Shows a status listing of the present register values inserted in CSDU.

The status listing has the same format as the listing at power—up, and a further description can
be found in the section: "Description of Registers”.

Especially note the following:

If "INVALID" replaces a position value, it indicates an invalid position. This may appear, if so
many lengths have been run forwards that the maximum value of the position register has been
exceeded (greater than 16777216), or if so many lengths have been run backwards that the
position register 15 less than zero (which cannot be shown correctly as the register cannot contain
negative values). In both cases the position register can only be correct by running to the absolute
zero position by means of the Z (ZERO POS) command for resetting.

Command: !<text> (COMMENT)

This command is used for entering comments into a program. Any text starting from the
exclamation mark and for the rest of the line will be ignored during execution of the program.

This can be used for entering information about date, customer, version No., etc.:

10 ! Name of customer
20 L7000 ! Length
30R ! Run motor

Tl
b

Arithmetic Calculations

As the command and programming examples show, values can be entered dircct into the registers
for instance by typing:

[.246

and the length register will show the value of 246.
However, mathematical expressions including the four basic arithmetic operations may also be
used:

+ addition

— subtraction

* multiplication

/ division
Then the expression must begin with an equal sign followed by the expression:

L=240+6

and the same result as above (246) will be obtained.

Numbers as well as register names may form part of the expression, and the same register name
may occur on both sides of the equal sign:

L2000
L=L~+300

will result in an increase of length from 2000 to 2300.
The expression may be as long as one line on the screen (80 characters) as for instance:

L=L+5/2+500-B*4

GENERAL RULES APPLYING TO ARITHMETIC
1. The expression must begin with an equal sign "=" and it must be typed as one long

continuous expression without any space between the individual values. A space, tabulator
or carriage return will be interpreted as end of the expression.

Il

Calculations will always be performed from left to right, i.e. calculations are performed
exactly in the order entered. Use of parantheses cannot change this order.

All numbers must be positive integers and expressible in 24 bits, i.c. max. valuc is
16777215, No results (nor intermediate results) must be negative.

fad
L]

4. In case of division the result is always rounded down meaning that this expression:
[=25/10 PRINT L

will print the result 2 as the decimal (0.8) will be rounded off.

5. The following registers may form part of an arithmetic expression:
AS Acceleration Step
B Fmin
D Dircction
L Length
N Loopcounter
E Position
PR Power Run
P5 Power Standby
S Speed
SM Fmax
UA UB ..UZ User registers

Furthermore, it is possible to enter an "X" EXTERNAL value from thumbwheels (preselection)
forming part of the formula.

If for instance the length is to be twice the value entered from thumbwheels Nos. 1-4 (and with
min. and max. limits 0 to 9999), this formula is entered:

[=2*X1-4,0-9999

34

Thumbwheels and Extra Inputs

Via the 26-way "Expansion connector” on the stepper motor controller front edge an adapter
circuit board may be connected opening up possibilities of connecting 4 switches and up to 9-
digit thumbwheels (preselection). In this way scveral inputs are available, and now it is also
possible to let the program input one or more manually set numerical values.
For description of electrical connection of the adapter circuit board, sce

"CSDU 2100 Hardware Manual”

under the section: "Expansion Connector — Kevboard/Thumbwheel Connection”.

The four new inputs are called inputs 5 to 8 and may be used in the program in exactly the same
wayv as the optically isolated standard inputs.

Input from thumbwheels requires entering of various information to the controller: It must be

indicated that external input of the numerical value takes place, from which thumbwheels input

is to take place, and allowable min. and max. valucs to be accepted.

The following command is wellknown and sets the length register at a fixed value being 234:
L234

However, if this length is to be input from preselection, this command is given instead:

LX1-4,0-9999

where
nx" means external input
"1—4" means input from preselection Nos, 1-4
"0-9999" sets the limits for the value of which input will be accepted

More generally the syntax for thumbwheels implies that the usual numerical value <n> is replaced
by

Xemsd>—<lsd>,<min>—<max>

where the meaning of the individual values is as follows:

X indicates that the values are external.
<msd> determines thumbwheel select number for the most significant digit
<lsd=> determines thumbwheel select number for the least significant digit

A

3

r

<min> specifies the lowest value of which input will be accepted
<max: specifies the highest value of which input will be accepted

In practice input from thumbwheels takes place as follows:

The digits preselected will be input one at a time beginning from thumbwheel select Nos. 1, 2,
3....... to select No. 9. The first specificd and input digit will always be considered as the most
significant value <msd>, and the last input digit will then have the least significant value <lsd>.

If for instance input from thumbwheel digits 3-5 is specified, the digits will have the following
values:

Thumbwheel Value

select 1 no input

select 2 no input

select 3 "100" (most significant digit)
sclect 4 10"

sclect 5 "1" (least significant digit)
select 6 no input

select 7 no input

select B no input

select 9 no input

After input of values from the thumbwheels specified tests will be made whether a correct BCD

value has been input from the individual digit, and whether the value is within the (min.) and
(max.) limits specified.

In case the value is pot acceptable the execution of the program will stop at the same command,
the lightemitting diode "Thumbwheel Error” will turn on, and the same digits will be read over
and over. The execution of the program will not continue until the value set has been accepted.

[n this way allowable limits for the values set arc casily specified, and for instance setting of an

extremely high speed for SPEED may be prevented as well as setting at a position higher than
the actual mechanics permit.

Thumbwheel values may be entered into all registers except for "C" conversion factor.

This is due to the fact that only input of integers is possible, and that decimals will not be
accepted.

Example 1: A program is requested where the length "L" is not fixed but determined by
thumbwheels. Sclection from 1 to 400 units of length must be possible and therefore 3
thumbwheels are connected to pins marked "seleet 1", “select 2" and "select 3",

36

The three digits will have the following meaning:

Thumbwheel: Meaning:

Select 1 "100" {most significant digit)
Select 2 "10°

Select 3 "1" (least significant digit)

The following program will wait for input 5, read the length sclected and run the length in
question:

10 WIS I Wait for input 5

20 LX1-3,1-400 ' Read length from thumb 1-3:
25 ! Minlimit=1 maxlimit=400
JOR ! Run length

Example 2: By means of 4-digit thumbwheels the position of the motor with reference to
mechanical zero position is specified. It is selected how many steps from the zero position the
motor should be.

By means of 3-digit thumbwheels the top speed of the motor is determined.

Expansion connector is connected as follows

Select Thumbwheel

1 Position "1000" (most significant digit)
2 Position "100"

3 Position "1(})"

4 Position "1" (least significant digit)

5 Speed "100" (most significant digit)

f Speed "10"

7 Speed "1" (least significant digir)

Input 5 Start switch

10 B10O AS1000 SM1000 ! Init Fmin & Accltime & Fmax

20 SX5-7,100-999 ! Read speed: min=100Hz max=999 Hz
30 Z I Z-Pos scarch

40 WIS I Wait for input 5

50 SX5-7,100-999 ! Read speed

60 PX1-4,0-9999 I' Read position: min=0 max=9999

RO R ' Run calculated length

90 G40 ' Go back & wait again

When mechanical zero position (defined by input 4) has been found, activation of input 5 is
awaited. Then the motor will run to the position sclected.

Note that if input 5 is reactivated without changing of position thumbwheels, the motor will not
run. This is due to the fact that the motor already is at the position requested, and consequently
the length (= the diffcrence between present and new position) is zero.

37

Process of Motor Running

Standard Motor Running
When giving a command making the motor run:

R RUN MOTOR
J JOG MOTOR
Z ZERO POS SEARCH

the controller will check whether FMIN, FMAX or ACCLSTEP have been changed since latest
run. If s0, a new acceleration table will automatically be calculated. It takes 300-600 msecs, after

which the motor starts. If an immediate start of the motor is requested, the table can be calculated
in advance by mcans of the A ACCLCALC command.

When an "R" command is given, the motor will run a number of steps, usually distributed on
acceleration/full speed/deceleration steps. The total number of steps run is calculated from the
formula:

Total steps =L * C

where L. = length
C = conversion factor

If a remainder (i.e. a fraction of onc full step) should occur as a result of the calculation, this
remainder will be accumulated in an internal register.

In case this results in a value exceeding one full step, total steps will be increased by 1.

If the conversion factor C = 1, then total steps = length (L), and no remainder will occur from
the calculation. Rounding off will not occur cither.

When the motor is started, it will accelerate from FMIN to SPEED according to a cosine curve.
Number of steps used for the process of acceleration is determined by ACCLSTEP.

When the motor has reached the maximum speed SPEED (S), it will run at a constant speed (full
speed step).
Then deceleration will take place according to the same (reversed) process as in connection with
acceleration.

An exception from this process occurs when total steps are less than 2 times ACCLSTEP.
In this case the motor will never reach full speed, but will distribute the process of running
evenly between acceleration and deceleration.

Multitask Motor Running

At ordinary motor running the program executes only onme command at a time so that the
execution of the program waits while the motor is running. The cxecution of the program will
not continue until the motor has finished running,

However, this form of program performance may be changed by means of the special command
"RUN MULTITASK":

R#

Then the motor will start in order to run a distance in exactly the same way as when an ordinary

RUN MOTOR" command is given, but now the execution of the program will continue as soon
as the motor has been started. This opens up possibilities of having various commands executed
during running of motor: Switching on and off of outputs, monitoring of more inputs for detection
of special combinations of signals, and finally, and perhaps the most important thing: dynamic
change of motor speed during running is possible. In the example below reading of inputs 1 and
2 will take place during running of motor. If input 1 is active, the speed will be changed to 2000
Hz, if input 2 is active, the speed will be changed to 8000 Hz:

10 SMB000 L* ' Init Acel - cont. running
20 R# ! Start motor multitask

30 11 S2000 'Ifin 1 = ON sct speed
40 12 SRO00 "If in 2 = ON set speed
50 G30 ' Read inputs again

During multitask running it is possible to test whether the motor is running or whether it has
completed its motion, If the motor is running, the "M" register is 1, and if the motor is not
running, this register is (.

Exccution of a definite part of the program will often be required when the motor has run a
defined distance. Two special commands can be used for synchronizing the program performance
with a distance which actually has been run:

WL<n> Wait for running of relative length
WP<n> Wait for running of absolute position

The following example will set the total running distance at 20000. At the beginning the motor
is to run 4000 Hz, but when a length of 9000 has been run, the speed is to be increased to 10000

Hz. When the total length has been run (and the motor has completed its run) output 2 is
switched on, and input 3 is waited for.

39

10 L20000 ! Set total length

20 54000 ! Set start speed

30 R# ! RUN MULTITASK

40 WL9000 ! Wait for length reached
50 510000 ! Change specd

60 IF M=1 G60 I Wait until motor finished
70 02.1 ! ALL DONE: Out 2 ON
80 W13 ! Wait for input 3

It is also possible to specify absolute positions, i.e. distances calculated from the zero switch. This
is often casier than calculating rclative motions.

By means of these special commands highly flexible patterns can be run, but as far as changes
during running arc concerned there are certain limitations:

L The length or position to which the motor is to run must be specified before start of
motor, meaning that length, position and direction registers cannot be changed during run—
ning,

L The motor current PR and PS cannot be changed during running.

X A RUN command must be given only when the motor is not running. A motor already
running must not be started.

Automatic Start of User Program

The command lines being entered beginning with a line number:

10 PRINT "HELLO"
20 L4000
30 R

will be stored in the internal CMOS memory with battery backup. Connection of an extra battery
is not required as the life of the internal battery is 10 vears.

The controller includes an autostart feature enabling automatic execution of the program as soon
as the controller is switched on. The procedure is as follows: When the program has been entered
and tested with PC connected (so that error messages, if any, will be displayed), the controller
is switched off, and the RS 232 cable is disconnected.

When the stepper motor controller then is turned on without PC connected, the program will
automatically start.

In case connection of PC should be required later on, first switch off the stepper motor controller
and then restart as described at the beginning of this manual.

40

Survey of Commands

PRO TIM 3 Version 3.4

e e —

E
Command Example SETUP/INITIALIZATION
ACCLSTEP AS2000 Total acccleration = 2000 steps
FMIN B300 Start speed = 300 Hz
FMAX SMS000 Max. top speed = 9000 Hz
CONVERSION C2,67 Length/position conversion factor: ||
I LorP=2067 steps
PWR-RUN PR4000 Motor operating current = 4000 mA
PWR-STANDBY PS2000 Motor standby current = 2000 mA

y

— =S

Command Example SPEED, LENGTH, DIRECTION

SPEED S3000 Actual speed = 3000 Hz

LENGTH 1.2300 Relative length = 2300

LENGTH 1.* Infinite length {continous running)

POSITION P6S54 Calculate relative length and direction
from absolute position 654

HOME HM?230 Sct direct position register to new home
position 230

DIR FRWRD DO Relative direction = forwards

DIR BCKWRD D1 Relative direction = backwards

41

